TUTORIAL NOTES FOR MATH4010

JUNHAO ZHANG

1. DUAL SPACE OF ℓ^{p}

Let us discuss the dual space of ℓ^{p}.
Example $1\left(\left(\ell^{p}\right)^{*}=\ell^{q}\right)$. Let $1 \leq p<\infty$, for given $y \in \ell^{q}$, define $T_{y}: \ell^{p} \rightarrow \mathbb{R}$ by

$$
T_{y}(x)=\sum_{i=1}^{\infty} x(i) y(i), \quad \forall x \in \ell^{p}
$$

Then $T: y \mapsto T_{y}$ is an isometric isomorphism of the Banach space ℓ^{q} onto the dual of ℓ^{p}, where $\frac{1}{p}+\frac{1}{q}=1$.

Proof. We define the pairing for $x \in \ell^{p}$ and $y \in \ell^{q}$, where $\frac{1}{p}+\frac{1}{q}=1$,

$$
\langle x, y\rangle:=\sum_{i=1}^{\infty} x(i) y(i)
$$

This expression is well-defined. Indeed, by the Hölder's inequality,

$$
|\langle x, y\rangle| \leq \sum_{i=1}^{\infty}|x(i) y(i)| \leq\|x\|_{p}\|y\|_{q}<\infty
$$

Therefore for any fixed $y \in \ell^{q}$, we can define the a linear continuous functional

$$
\begin{aligned}
f_{y}: \ell^{p} & \rightarrow \mathbb{R} \\
x & \mapsto\langle x, y\rangle .
\end{aligned}
$$

Hence $f_{y} \in\left(\ell^{p}\right)^{*}$. Furthermore, we define the map

$$
\begin{aligned}
T: \ell^{q} & \rightarrow\left(\ell^{p}\right)^{*}, \\
y & \mapsto f_{y} .
\end{aligned}
$$

We claim that T is an isomorphism, i.e. T is a linear bijection such that

$$
\|T(y)\|_{\left(\ell^{p}\right)^{*}}=\|y\|_{q} . \quad \text { (isometric mapping) }
$$

Since for arbitrary $x \in \ell^{p}$ and $\lambda_{1}, \lambda_{2} \in \mathbb{R}, y_{1}, y_{2} \in \ell^{q}$,

$$
f_{\lambda_{1} y_{1}+\lambda_{2} y_{2}}(x)=\left\langle x, \lambda_{1} y_{1}+\lambda_{2} y_{2}\right\rangle=\lambda_{1}\left\langle x, y_{1}\right\rangle+\lambda_{2}\left\langle x, y_{2}\right\rangle=\lambda_{1} f_{y_{1}}(x)+\lambda_{2} f_{y_{2}}(x),
$$

which implies

$$
T\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}\right)=\lambda_{1} T\left(y_{1}\right)+\lambda_{2} T\left(y_{2}\right)
$$

Therefore T is linear.
To prove T is injective, suppose $f_{y}=0$, then for arbitrary $x \in \ell^{p}$,

$$
\langle x, y\rangle=0,
$$

we take $x=e_{i}$, where $e_{i}(i)=\delta_{i j}, \delta_{i j}$ is the Kronecker delta function, therefore

$$
\left\langle e_{i}, y\right\rangle=y(i)=0
$$

which implies $y=0$, therefore T is injective.
To prove T is surjective, let $f \in\left(\ell^{p}\right)^{*}$, if $f=0$, then by taking $y=0$, we have $f=f_{0}$. For $f \neq 0$, we define y_{f} as

$$
y_{f}(i)=f\left(e_{i}\right) .
$$

We claim that $y_{f} \in \ell^{q}$ and $f=f_{y_{f}}$.
Indeed, for $p=1, q=\infty$, for arbitrary $n \in \mathbb{N}$,

$$
\left|y_{f}(n)\right| \leq\left|f\left(e_{n}\right)\right| \leq\|f\|_{\left(\ell^{1}\right)^{*}} \cdot\left\|e_{n}\right\|_{1}=\|f\|_{\left(\ell^{1}\right)^{*}},
$$

therefore $y_{f} \in \ell^{\infty}$ with $\left\|y_{f}\right\|_{\ell^{\infty}} \leq\|f\|_{\left(\ell^{1}\right)^{*}}$. Moreover, by the definition, for arbitrary $x \in \ell^{1}$,

$$
f(x)=f\left(\sum_{i=1}^{\infty} x(i) e_{i}\right)=\sum_{i=1}^{\infty} x(i) f\left(e_{i}\right)=\sum_{i=1}^{\infty} x(i) y_{f}(i)=\left\langle x, y_{f}\right\rangle
$$

which implies $f=f_{y_{f}}$, and

$$
|f(x)| \leq\left|\left\langle x, y_{f}\right\rangle\right| \leq\|x\|_{1}\left\|y_{f}\right\|_{\infty},
$$

implies $\|f\|_{\left(\ell^{1}\right)^{*}} \leq\left\|y_{f}\right\|_{\infty}$, therefore $\left\|y_{f}\right\|_{\infty}=\|f\|_{\left(\ell^{1}\right)^{*}}$.
For $1<p, q<\infty$, and arbitrary $m \in \mathbb{N}$, we take

$$
x_{m}(n)= \begin{cases}\left|y_{f}(n)\right|^{q-1} \operatorname{sgn}\left(y_{f}\right) & , n \leq m \\ 0 & , n>m\end{cases}
$$

then $x_{m} \in \ell^{p}$, indeed,

$$
\left\|x_{m}\right\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{m}(n)\right|^{p}\right)^{\frac{1}{p}}=\left(\sum_{n=1}^{m}\left|y_{f}(n)\right|^{q}\right)^{\frac{1}{p}}<\infty .
$$

Therefore on the one hand,

$$
f\left(x_{m}\right)=\left\langle x_{m}, y_{f}\right\rangle=\sum_{n=1}^{m} x_{m}(n) y_{f}(n)=\sum_{n=1}^{m}\left|y_{f}(n)\right|^{q},
$$

on the other hand,

$$
\left|f\left(x_{m}\right)\right| \leq\|f\|_{\left(\ell^{p}\right)^{*}} \cdot\left\|x_{m}\right\|_{p} \leq\|f\|_{\left(\ell^{p}\right)^{*}} \cdot\left\|y_{f}\right\|_{q}^{\frac{q}{p}}
$$

therefore by letting m goes to infinity,

$$
\left\|y_{f}\right\|_{q}^{q} \leq\|f\|_{\left(\ell^{p}\right)^{*}} \cdot\left\|y_{f}\right\|_{q}^{\frac{q}{p}}
$$

which implies

$$
\left\|y_{f}\right\|_{q} \leq\|f\|_{\left(\ell^{p}\right)^{*}}
$$

therefore $y_{f} \in \ell^{q}$ with $\left\|y_{f}\right\|_{q} \leq\|f\|_{\left(\ell^{p}\right)^{*}}$. Moreover, by the definition, for arbitrary $x \in \ell^{p}$,

$$
f(x)=f\left(\sum_{i=1}^{\infty} x(i) e_{i}\right)=\sum_{i=1}^{\infty} x(i) f\left(e_{i}\right)=\sum_{i=1}^{\infty} x(i) y_{f}(i)=\left\langle x, y_{f}\right\rangle
$$

which implies $f=f_{y_{f}}$, and

$$
|f(x)| \leq\left|\left\langle x, y_{f}\right\rangle\right| \leq\|x\|_{p}\left\|y_{f}\right\|_{q},
$$

implies $\|f\|_{\left(\ell^{p}\right)^{*}} \leq\left\|y_{f}\right\|_{q}$, therefore $\left\|y_{f}\right\|_{q}=\|f\|_{\left(\ell^{p}\right)^{*}}$.

[^0]
[^0]: Email address: jhzhang@math.cuhk.edu.hk

